383 research outputs found

    Development of a site conditions map for the Campania-Lucania region (southern Apennines, Italy)

    Get PDF
    Having a reliable site conditions estimate is an important step to analyze and predict earthquake ground motions. To provide this information for the Campania-Lucania region (southern Apennines, Italy), in the framework of a collaboration with regional civil protection agency, geologic units shown on 1:250,000 scale geologic map, have been sorted together into four categories based on age and geological similarities. According to the site classification defined in engineering building codes, we have assigned to each site classes, a value or range of values of the average shear-wave velocity to 30 m (Vs30) and of the site dominant period. Thus, we have digitized the category boundaries from the map tracing only the geologic contacts that separate units of different site classes. The accuracy of the site-conditions map is only limited by the number of Vs profiles, used to compute the Vs30, and geologic data available so far. Analyses with new data will allow updates and modifications of this map. Anyhow, the resulting site classification map may be an helpful tool to better characterizing the sites effects for those applications where amplification values at large scale are need, such as ground-shaking maps or seismic hazard maps

    Development of gasoline-ethanol blends laminar flame speed correlations at full-load Si engine conditions via 1D simulations

    Get PDF
    Nowadays, most of the engineering development in the field of Spark-Ignited (SI) Internal Combustion Engines (ICEs) is supported by 3D-CFD simulations relying on flamelet combustion models. Such kind of models require laminar flame speed as an input to be specified by the user. While several laminar flame speed correlations are available in literature, for gasoline and pure ethanol at ambient conditions, there is a lack of correlations describing laminar flame speed of gasoline-ethanol blends, for different ethanol volume content, at conditions deemed to be representative of engine-like conditions. Toluene Reference Fuel surrogates with addition of ethanol (ETRF), suitable for representing gasoline-ethanol blends up to 85% vol. ethanol content are formulated. Thanks to these surrogates, 1D premixed laminar flame speed calculations are performed at selected engine-relevant conditions for a E5, E20 and E85 fuels. As a final outcome, three different laminar flame speed correlations based on the chemistry-based calculations are derived for E5, E20 and E85 gasoline-ethanol fuel blends focusing on typical full-load engine conditions. Such kind of correlations can be easily implemented in any 3D-CFD code to provide a chemistry-grounded estimation of laminar flame speed during combustion calculations. Such correlations are of practical use, since they might help in developing the next generation of bio-fuels powered internal combustion engines

    A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods

    Get PDF
    In the past few decades, research has developed a multitude of strategies, methods and technologies to reduce consumptive water use on farms for adaptation to the increasing incidence of water scarcity, agricultural droughts and multi-sectoral competition for water. The adoption of these water-saving practices implies accurate quantification of crop water requirements with the FAO56 crop coefficient approach, under diverse water availability and management practices. This paper critically reviews notions and means for maintaining high levels of water consumed through transpiration, land and water productivity, and for minimizing non-beneficial water consumption at farm level. Literature published on sound and quantified experimentation was used to evaluate water-saving practices related to irrigation methods, irrigation management and scheduling, crop management, remote sensing, plant conditioners, mulching, soil management and micro-climate regulation. Summary tables were developed on the benefits of these practices, their effects on non-beneficial water consumption, crop yields and crop water productivity, and the directions for adjustment of FAO56 crop coefficients when they are adopted. The main message is that on-farm application of these practices can result in water savings to a limited extent (usually<20%) compared to sound conventional practices, however this may translate into large volumes of water at catchment scale. The need to streamline data collection internationally was identified due to the insufficient number of sound field experiments and modelling work on the FAO56 crop water requirements that would allow an improved use of crop coefficients for different field conditions and practices. Optimization is required for the application of some practices that involve a large number of possible combinations (e.g. wetted area in micro-irrigation, row spacing and orientation, plant density, different types of mulching, in-field water harvesting) and for strategies such as deficit irrigation that aim at balancing water productivity, the economics of production, infrastructural and irrigation system requirements. Further research is required on promising technologies such as plant and soil conditioners, and remote sensing applicationsinfo:eu-repo/semantics/publishedVersio

    The application of ground-based and satellite remote sensing for estimation of bio-physiological parameters of wheat grown under different water regimes

    Get PDF
    Remote sensing technologies have been widely studied for the estimation of crop biometric and physiological parameters. The number of sensors and data acquisition methods have been increasing, and their evaluation is becoming a necessity. The aim of this study was to assess the performance of two remote sensing data for describing the variations of biometric and physiological parameters of durum wheat grown under different water regimes (rainfed, 50% and 100% of irrigation requirements). The experimentation was carried out in Policoro (Southern Italy) for two growing seasons. The Landsat 8 and Sentinel-2 images and radiometric ground-based data were acquired regularly during the growing season with plant biometric (leaf area index and dry aboveground biomass) and physiological (stomatal conductance, net assimilation, and transpiration rate) parameters. Water deficit index was closely related to plant water status and crop physiological parameters. The enhanced vegetation index showed slightly better performance than the normalized difference vegetation index when plotted against the leaf area index with R2 = 0.73. The overall results indicated that the ground-based vegetation indices were in good agreement with the satellite-based indices. The main constraint for effective application of satellite-based indices remains the presence of clouds during the acquisition time, which is particularly relevant for winter-spring crops. Therefore, the integration of remote sensing and field data might be needed to optimize plant response under specific growing conditions and to enhance agricultural production

    Stop-event-related potentials from intracranial electrodes reveal a key role of premotor and motor cortices in stopping ongoing movements

    Get PDF
    In humans, the ability to withhold manual motor responses seems to rely on a right-lateralized frontal–basal ganglia–thalamic network, including the pre-supplementary motor area and the inferior frontal gyrus (IFG). These areas should drive subthalamic nuclei to implement movement inhibition via the hyperdirect pathway. The output of this network is expected to influence those cortical areas underlying limb movement preparation and initiation, i.e., premotor (PMA) and primary motor (M1) cortices. Electroencephalographic (EEG) studies have shown an enhancement of the N200/P300 complex in the event-related potentials (ERPs) when a planned reaching movement is successfully stopped after the presentation of an infrequent stop-signal. PMA and M1 have been suggested as possible neural sources of this ERP complex but, due to the limited spatial resolution of scalp EEG, it is not yet clear which cortical areas contribute to its generation. To elucidate the role of motor cortices, we recorded epicortical ERPs from the lateral surface of the fronto-temporal lobes of five pharmacoresistant epileptic patients performing a reaching version of the countermanding task while undergoing presurgical monitoring. We consistently found a stereotyped ERP complex on a single-trial level when a movement was successfully cancelled. These ERPs were selectively expressed in M1, PMA, and Brodmann's area (BA) 9 and their onsets preceded the end of the stop process, suggesting a causal involvement in this executive function. Such ERPs also occurred in unsuccessful-stop (US) trials, that is, when subjects moved despite the occurrence of a stop-signal, mostly when they had long reaction times (RTs). These findings support the hypothesis that motor cortices are the final target of the inhibitory command elaborated by the frontal–basal ganglia–thalamic network

    An advanced seismic network in the Southern Apennines (Italy) for seismicity investigations and experimentation with earthquake early warning.

    Get PDF
    The last strong earthquake that occurred in the southern Apennines, the Irpinia earthquake on 23 November 1980 (M 6.9), was characterized by a complex rupture mechanism that ruptured three different faults (Bernard and Zollo 1989). This earthquake was well studied, and the quantity of data available has allowed a very detailed definition of the geometry and mechanisms of faults activated during this seismic event (Westaway and Jackson 1987; Pantosti and Valensise 1990). Even more than 20 years after the main event, the seismotectonic environment that contains the fault system on which the 1980 earthquake occurred shows continued background seismic activity including moderate-sized events such as the 1996 (M 5.1), 1991 (M 5.1) and 1990 (M 5.4) events. Moreover, the locations of the microearthquakes (taken from the database of the Istituto Nazionale di Geofisica e Vulcanologia, INGV) define an epicentral area with a geometry and extent surprisingly similar to that of the 1980 earthquake and its aftershocks (figure 1A). These simple observations suggest that it may be possible to study the preparation cycles of strong earthquakes on active faults by studying the microseismicity between seismic events. With this in mind, a seismic network of large dynamic range was planned and is now in an advanced phase of completion in the southern Apennines. Called ISNet (Irpinia Seismic Network), it is equipped with sensors that can record high-quality seismic signals from both small-magnitude and strong earthquakes, from which it will be possible to retrieve information about the rupture process and try to understand the scaling relationships between small and large events. Due to its high density, wide dynamic range, and advanced data-acquisition and data-transmission technologies, the network is being upgraded to become the core infrastructure of a prototype system for seismic early warning and rapid post-event ground-shaking evaluation in the Campania region, which has seismic hazard that ranks among the highest in Italy (Cinti et al. 2004). ISNet will be devoted to real-time estimation of earthquake location and magnitude and to measuring peak ground-motion parameters so as to provide rapid ground-shaking maps for the whole of the Campania region. The information provided by ISNet during the first seconds of a potentially damaging seismic event can be used to activate several types of security measures, such as the shutdown of critical systems and lifelines (Iervolino et al. 2006). The implementation of a modern seismic network involves many different research and technological aspects related to the development of sophisticated data management and processing. The communication systems need to rapidly generate useful, robust, and secure alert notifications. Here we provide a general technical and seismological overview of ISNet's complex architecture and implementation.Published622-6344.1. Metodologie sismologiche per l'ingegneria sismicaJCR Journalreserve

    Activity and safety of RAD001 (everolimus) in patients affected by biliary tract cancer progressing after prior chemotherapy: a phase II ITMO study.

    Get PDF
    BACKGROUND: Biliary tract cancer (BTC) is a highly lethal disease for which the best available therapy remains undetermined. The mammalian target of rapamycin (mTOR) pathway is up-regulated in several cancers, including BTC, and preclinical evidence indicates that mTOR inhibition may be effective in the treatment of BTC. We sought to evaluate the activity and tolerability of the mTOR inhibitor RAD001-everolimus-in patients with BTC progressing after prior chemotherapy. PATIENTS AND METHODS: This was an open-label, single-arm, phase II study (EUDRACT 2008-007152-94) conducted in eight sites in Italy. Patients with locally advanced, metastatic or recurrent BTC progressing despite previous chemotherapy received a daily oral dose of everolimus 10 mg administered continuously in 28-day cycles. The two primary end points were disease control rate (DCR) and objective response rate (ORR). Secondary end points were progression-free survival (PFS), overall survival (OS) and time-to-progression (TTP). RESULTS: Thirty-nine patients were enrolled. The DCR was 44.7%, and the ORR was 5.1%. One patient showed a partial response at 2 months and one patient showed a complete response sustained up to 8 months. The median (95% confidence interval) PFS was 3.2 (1.8-4.0) months, and the median OS was 7.7 (5.5-13.2) months. The median TTP was 2.0 (1.7-3.7) months. Most common toxicities were asthenia (43.6%), thrombocytopenia (35.9%), pyrexia (30.8%) and erythema, mainly of mild-to-moderate severity. Two patients required dose reduction due to adverse events. CONCLUSION: Everolimus demonstrated a favourable toxicity profile and encouraging anti-tumour activity. Further trials are needed to establish the role of everolimus in the treatment of BTC. EUDRACT 2008-007152-94

    Peripheral Purinergic Modulation in Pediatric Orofacial Inflammatory Pain Affects Brainstem Nitroxidergic System: A Translational Research

    Get PDF
    Physiology of orofacial pain pathways embraces primary afferent neurons, pathologic changes in the trigeminal ganglion, brainstem nociceptive neurons, and higher brain function regulating orofacial nociception. The goal of this study was to investigate the nitroxidergic system alteration at brainstem level (spinal trigeminal nucleus), and the role of peripheral P2 purinergic receptors in an experimental mouse model of pediatric inflammatory orofacial pain, to increase knowledge and supply information concerning orofacial pain in children and adolescents, like pediatric dentists and pathologists, as well as oro-maxillo-facial surgeons, may be asked to participate in the treatment of these patients. The experimental animals were treated subcutaneously in the perioral region with pyridoxalphosphate-6-azophenyl-2′,4′-disulphonic acid (PPADS), a P2 receptor antagonist, 30 minutes before formalin injection. The pain-related behavior and the nitroxidergic system alterations in the spinal trigeminal nucleus using immunohistochemistry and western blotting analysis have been evaluated. The local administration of PPADS decreased the face-rubbing activity and the expression of both neuronal and inducible nitric oxide (NO) synthase isoforms in the spinal trigeminal nucleus. These results underline a relationship between orofacial inflammatory pain and nitroxidergic system in the spinal trigeminal nucleus and suggest a role of peripheral P2 receptors in trigeminal pain transmission influencing NO production at central level. In this way, orofacial pain physiology should be elucidated and applied to clinical practice in the future
    corecore